Можешь картинку нарисовать?
Биссектриса осторого угла делит его на 2а. Угол между высотой и биссектрисой будет равен 36-а. . Другой угол прямлугольного треугольника равен 90-(36-а) = 54+а. Он является внешним к углам равнобедренного треугольника при очновании. 54+а = 2а+2а а=18. Углы при осноании треугольника равны 36 и 36. Угол при вершине равен 180-72=108.
Вот собственно и решение Надеюсь написанно разборчиво)
x*y = 6*10 = 60; (x y - отрезки КZ, пусть х - больший);
Осевое сечение - это сечение геометрической фигуры, плоскость которой проходит через ось данной фигуры. Сечение конуса, которое проходит через его ось - равнобедренный треугольник, потому как образующие образуют боковые стороны этого треугольника. Имеем равнобедренный треугольник ABC: AB = BC = 2*sqrt(3). CO - высота конуса, которая является и медианой, и биссектрисой в равнобедренном треугольнике, опущенная на основу. Следовательно, угол BCO = углу ACO = 60 градусов. Из прямоугольного треугольника BOC: угол CBO = 90 - 60 = 30 градусов. Катет, который лежит против угла 30 градусов, равен половине гипотенузы: OB = CB/2, OB = sqrt(3) = R. Найдем высоту конуса. Из теоремы Пифагора: CO^2 = CB^2 - OB^2, CO^2 = 12 - 3 = 9, CO = 3 см = H. Площадь основания конуса - это площадь окружности: S = pi*R^2, S = 3*pi см^2.
Объем конуса равен (S*H)/3, V = (3*3pi)/3 = 3pi см^3.