В сечении - четырехугольник ДКВ₁М, где точка М - середина ребра СС₁.
Ч<span>етырехугольник ДКВ₁М - это параллелограмм по свойству сечения параллельных плоскостей секущей плоскостью.
Площадь его состоит из площадей двух треугольников, где
</span>В₁<span>Д - их общая сторона.
</span><span>Треугольники равнобедренные:
</span>КД = КВ₁ и В₁М = МД = √(а² + (а/2)²) = а√5/2.
Сторона В₁<span>Д как диагональ куба равна а</span>√3.
Высота треугольника равна √((а√5/2)² - (а√3/2)²) =
= √((5а²/4) - (3а²/4)) = а√2/2 = а/√2.
Ответ:
Площадь сечения S = 2*((1/2)*(a/√2)*(a√3) = a²√3/√2.
1) Проведём высоту СЕ.
Отрезок АЕ = ВС = 36 см.
СЕ =√(АС²-АЕ²) = √(3600-1296) = √2304 = 48 см.
По свойству высоты СЕ из вершины прямого угла АСД:
ЕД/СЕ = СЕ/АЕ.
Отсюда ЕД = СЕ²/АЕ = 2304/36 = 64 см.
АД = 36 + 64 = 100 см.
2) ДС = 25 - 20 = 5 см.
Проверяем, <span>подобны ли треугольники ABC и NDC?
</span>ДС/ВС = 5/25 = 1/5.
CN/АС = 8/48 = 1/6. Нет - не подобны.
<var>R=14<span> корней из 2</span></var>
<var>n=4</var>
<var>r=R cos180\n</var>
cos180=1
<var>r=<span> 7 корней из 2 / 2</span></var>
В данной пирамиде в основании лежит правильный шестиугольник. В нём АВ║СF, значит угол между СО и плоскостью SBC такой же, как и между стороной АВ и той же плоскостью.
SM - апофема грани SBC, OK⊥SM, SM∈SBC, значит СК⊥ОК.
Тр-ник СКО прямоугольный, значит ∠КСО - угол между СО и плоскостью SBC.
Тр-ник ВОС равносторонний. СО=ВС=1.
ОМ - высота правильного тр-ка. ОМ=а√3/2=ВС√3/2=√3/2.
В тр-ке SMB BM=BC/2=0.5. SM=√(SB²-BM²)=√(4-0.25)=√3.75.
В тр-ке SMO cosM=OM/SM=√3/(2√3.75).
sin²M=1-cos²M=1-3/15=12/15.
В тр-ке ОКМ ОК=ОМ·sinM=√3·√12/(2√15)=3/√15=√15/5.
В тр-ке СКО sin(КСО)=КО/СО=√15/5.
∠КСО=arcsin√15/5≈50.8° - это ответ.