Тангенс это отношение противолежащего катета к прилежащему. В данном случае tgA = 24/AC = 12/5
Обозначим АС за Х, тогда tgA = 24/х = 12/5.
х = 24/1 : 12/5 = 10.
АС = 10
По теореме Пифагора найдем АВ
AB^2 = AC^2 + CB^2 = 10^2 + 24^2 = 100 + 576 = 676
корень из 676 = 26.
АВ = 26
Решим эту задачу без применения частной формулы для правильного треугольника:Проведем в правильном треугольника АВС к каждой из сторон высоты: AF, BH, CE. Точка пересечения О.
Они будут и высотами и медианами и биссектрисами.
Рассмотри треугольник AFC: он прямоугольный. Угол FAC равен 30 (AF - биссектриса)⇒FC=½АС = ½5√3.
Находим катет AF: √((5√3)²-(½5√3)²) = √(75-75/4) = √(225/4) = 15/2
Исходя из равенства всех треугольников, полученных в результате построения высот треугольниа АВС, точкой пересечения высоты делятся в соотношении 2:1, т. е. АО=⅔AF⇒AO=⅔*(15/2)=5 см. Это и есть радиус.
Площадь S=πr²⇒S=25π
Длина окружности L=2πr⇒L=10π
Частная формула гласит R=(√3/3)*a⇒R=(√3/3)*5√3=15/3=5 (т. е. верно)
1) В правильной треугольной пирамиде SABC основание - проав треугольник АВС
∠ADC = ∠ACD = ∠1, так как ΔADC равнобедренный, тогда
∠DAC = 180° - 2· ∠1
∠ВСЕ = ∠ВЕС = ∠2, так как ΔВАС равнобедренный, тогда
∠ЕВС = 180° - 2 · ∠2
∠DAC + ∠EBC = 180° как внутренние односторонние углы при пересечении параллельных прямых AD и ВЕ секущей АВ.
180° - 2 · ∠1 + 180° - 2 · ∠2 = 180°
360° - 2(∠1 + ∠2) = 180°
2(∠1 + ∠2) = 180°
∠1 + ∠2 = 90°
∠DCE = 180° - (∠1 + ∠2) = 180° - 90° = 90°, значит
DC⊥CE