1) Найдите площадь полной поверхности призмы.
площадь основания S1 =AB*AB*sin(pi/3)*1/2 = корень(3)
боковая площадь S2 =AB*AA1*3 = 2*1*3=6
площадь полной поверхности призмы S3 = 2*S1+S2 = 2*корень(3) + 6
2) Найдите площадь сечения призмы плоскостью ACB1.
площадь основания S1 = AB*AB*sin(pi/3)*1/2 = корень(3)
высота треугольника основания h =AB*sin(pi/3)=корень(3)
высота треугольника сечения h1 = корень(h^2+AA1^2)=2
площадь сечения призмы плоскостью ACB1 S4 = S1*h1/h = корень(3) * 2/корень(3) = 2
3) Найдите угол, который составляет прямая AB1 с плоскостью ABC.
тангенс угла = BB1/AB=1/2
угол = арктангенс(0,5)
4) Найдите угол между плоскостями AB1C и ABC.
высота треугольника основания h =AB*sin(pi/3)=корень(3)
тангенс угла = BB1/h=1/корень(3)
угол = арктангенс(1/корень(3)) = pi/6 = 30 градусов
5) Найдите длину вектора AA1-AC+2B1B-C1C
AA1-AC+2B1B-C1C=CА+B1B+СC1=CА+A1A+AA1=CA
ответ - 2 см
6) Докажите, что прямая A1C1 параллельна плоскости ACB1.
прямая A1C1 параллельна прямой АС, лежащей вплоскости ACB1, значит параллельна плоскости ACB1
Если окружность вписанная то есть св-ва: H=2*r(ро) r--радиус окружности вписанная в основания и вписанной сферы. они оба равны. из основания найдем радиус впис. окружности r=(3+4-5)/2=1 следовательно H=2*1=2. теперь рассмотрим описанную сферу имеем треугольник в вида смотрите на рисунок найдя радиус опис. сферы можно найти поверхность сферы!!!!!! S=4πR²
по теор. пифагора R²=1²+(5/2)²=29/4
S=4π*29/4=29π!!!!!!!!!!!!!!!!!!!!!!! это ответ!!!!!!!!!!!!!!
A - центр большей окружности.
АС = 5
С - центр меньшей окружности.
ВК = 2
АВ = 1 - расстояние между их центрами.
КС - диаметр окружности, касающейся данных.
КС = АС - АВ - ВК = 5 - 1 - 2 = 2
Тогда радиус этой окружности равен 1.
Ответ:
80
Объяснение:
тут решается через пропорцию
МО/ОL=NO/OK
4/32=10/x
x=32*10/4
x=80