<span>1) Координаты вектора определяюnся разностью одноименных координат его точек.
Вектор АВ (-2i:3j; 0k), АВ = 3,6056
Вектор АС (-2i;0j;6k), АС = 6,3246
Вектор АД (0i;3j;8k). АД = 8,544
Модуль вектора d = √ ((х2 - х1 )^2 + (у2 - у1 )^2 + (z2 – z1 )^2).
2) Угол между векторами (АВ ) ⃗ и (АС) ⃗;
АВ-АС 4 4 13 3,606 40 6,325 22,8 cos α = 0,175412
акос α = 1,394472 радиан = 79,89739 градус.
3) Проекция вектора (АD) ⃗ на вектор (АВ) ⃗
Решение:
Пр ba = a · b|b|
Найдем скалярное произведение векторов:
a · b = ax · bx + ay · by + az · bza · b = 0 · (-2) + 3 · 3 + 8 · 0 = 0 + 9 + 0 = 9
Найдем модуль векторов:
|b| = √bx² + by² + bz² = √(-2)² + 3² + 0² =
= √4 + 9 + 0 = √13
Пр ba =9/√13 = 9√13/13 ≈ 2.4961508830135313.
</span>
14x+x=90
x=6
14x=84
<span>углы по 84 и 6 градусов</span>
РЕШЕНИЕ
В четырехугольнике ACBO ∠A и ∠ B по 62 Сумма углов четырехугольника 360 градусов ∠АОВ = 360 - 90 - 90 - 62 = 118
Ответ: 118
Я не знаю что за буква сверху поэтому я написал что B
Грань АДС <span>правильной треугольной пирамиды - равнобедренный треугольник.
Его площадь равна: S = a</span>²/(4tg(α/2)).
Так как заданная <span>площадь сечения пирамиды плоскостью, проходит через середину ребра BC и параллельна плоскости DAC, то в рёбрах АДВ и СДВ линии сечения параллельны рёбрам АД и ДС - то есть получаем подобный треугольник, площадь которого пропорциональна квадрату коэффициента подобия.
Из условии следует, что этот коэффициент равен 1/2.
Тогда площадь заданного сечения в 4 раза меньше АДС.
Ответ: площадь сечения равна:
</span>S = a²/(16tg(α/2)).