Трапеція АВСД, АВ=СД=24, кутА=кутД, кутВ=кутС, МН-середня лінія. точка О - перетин МН та АС, МО=8, ОН=20, ТрикутникАВС, МО-середня лінія трикутника=1/2ВС, ВС=2*МО=2*8=16, трикутникАСД, ОН-середня лінія трикутника=1/2АД, АД=2*ОН=2*20=40, проводимо висоти ВК та СТ на АД, трикутник АВК=трикутникТСД як прямокутні га гіпотенузою і гострим кутом, ТД=АК, КВСТ-прямокутник, ВС=КТ=16, АК=ТД=(АД-КТ)/2=(40-16)/2=12, трикутник АВК прчмокутний, катет АК=1/2 гіпотенузиАВ, звідси кут АВК=30, кутА=90-30=60=кутД, кутВ=кутС=180-60=120
Т.к. NE это медиана и высота то ∆MNP равнобедренный =>NE это и биссектриса (по свойству равнобедренных треугольников) т.к. ∆MNP равнобедренный,
то MN=NP
Вроде бы так)Прочитай тему Равнобедренных треугольников и попробуй ещё раз только сам =)
Т.к. АВС равнобедренный, то СН- медиана (АН=ВН=20см). АС=АН:cosA=25cм. По Т. Пифагора НС^2=АС^2-АН^2, CH=15cм.
<span>трапеция АВСД, АВ=СД, уголА=уголД, ВС=1, проводим высоты ВН и СК на АД, высота трапеции=диаметр вписанной окружности=радиус*2=1*2=2, треугольник АВН=треугольник КСД как прямоугольные по гипотенузе и острому углу, АН=КС=х, НВСК прямоугольник ВС=НК=1, АД=АН+НК+КД=х+1+х=2х+1, в трапецию можно вписать окружность при условии- сумма оснований=сумме боковых сторон, АД+ВС=АВ+СД, 2х+1+1=2АВ, АВ=х+1, треугольник АВН прямоугольный, ВС в квадрате=АВ в квадрате-АН в квадрате , 4=х в квадрате+2х+1-х в квадрате, 2х=3, х=1,5=АН=КД, АД=1,5+1+1,5=4, площадь АВСД=1/2*(ВС+АД)*ВН=1/2*(1+4)*2=5</span>