Ответ:
Расм. треугольник ВНС за теоремой Пифагора ВС в квадрате =ВН в квадрате+НС в квадрате ВС в квадрате+36+64=100, ВН=10 косинусС=НС: ВС=8:10=0,8.Треугольник АВН имеет две ровные стороны ВН=АН, ВН-высота кутАВС=45 градусов тогда кутА=45 градусов. АС=АН+НС=6+8=14.Расмотрим треугольник АСМ, АМ-медиана.За свойством медианы МС=10:2=5.За теоремой косинусов АМ в квадрате =АС в квадрате+МС в квадрате-2умножить на АС и МС и косинус угла С. АМ в квадрате=198+25-2*14*5*0,8=221-112=109.
АМ= корень квадратный с числа 109. АМ приблезительно равно 10,42
Объяснение:
Начертите чертёж и посмотрите внимательно.
Рассмотрим одну из вершин трапеции и отрезки сторон, соединяющие эту вершину с точками, в которых окружность касается сторон.
Эти отрезки равны между собой как отрезки касательных, проведённых к окружности из одной точки.
Такое рассуждение можно провести для всех 4-х вершин.
Таким образом, наша трапеция "собрана" из отрезков 4-х видов (длин) , каждый повторяется по 2 раза. Назовём эти длины А, В, С и D.
Периметр трапеции - это 2(А+В+С+D)=12.
Далее, средняя линия трапеции равна полусумме её оснований. Основания также складываются из наших 4-х отрезков. Сумма оснований будет (А+В+С+D)=12/2=6.
Полусумма - (А+В+С+D)/2=6/2=3.
1)Проведем прямую МК параллельно ВС.Получим параллелограмм МВСК. Внем МС будет диагональю, которая делит его на два равновеликих треугольника с площадью равной 5. Значит площадь МВСК будет равна 10. М- середина, значит МК разделила данный параллелограмм на два равных , площадь каждого из них равна 10. Значит площадь всего параллелограмма равна 20.
Вторая сторона (56-20) : 2 = 18
площадь параллелограмма =18 * 10 * син30градусов = 90 см2