Сделали
Построим SO пл. АВС.
SA, SB, SC - наклонные, а рав ные наклонные имеют равные проекции, поэтому АО=ВО = СО; поэтому в пл. АВСАО = R,R- радиус описанной окружности.
ΔАВС - правильный; про должим АО, СО и ВО до пересечения их со сторонами треугольника.
(из свойств правильного треугольника).
Соединим точки 5 и В, Ах и 5, С\ и 5.
линейный угол двугранного угла SACB.
линейный угол двугранного угла SABC.
- линейный угол двугранного угла SBCA (по определению).
ΔOB1S = ΔOC1S = ΔOA1S - по двум катетам (ОВ1<span> = ОС</span>1<span> = ОА</span>1<span> = r, r - радиус вписанной окружности в ΔABC, SO - общий катет),</span>
(из равенства треугольников).
Раз все ребра тетраэдра равны, то доказанное выше справедливо и для всех двугранных углов.
Поэтому все двугранные углы равны.
<span>Отыщем один из линейных углов двугранного угла, например, </span>двугранного угла SBCA.
Пусть а - ребро тетраэдра, то имеем
ΔBSC: SA1 =а sin 60°
ΔАВС: ОА1
ΔSA1O: cos φ
φ - острый угол.
Отсюда: φ =
Ответ: φ =
Меньшая боковая стороны равна √2
S=полусумме оснований на высоту
S=1/2(2√2+3√2)*√2=10
Обозначим каждую третью часть средней линии за х.
Тогда верхнее основание равно 2х,
Можно найти значение верхнего основания КМ из выражения:
КМ = (12+2х)/2 = 3х.
6 + х = 3х,
2х = 6,
х = 6/2 = 3 см.
Верхнее основание равно 2х = 2*3 = 6 см.
Средняя линия равна 3х = 3*3 = 9 см.
Из заданного условия следу<span>ет</span>, что диагонали наклонены к основаниям под углом 45°.
Поэтому высота трапеции равна сумме половин оснований, то есть средней линии.
Тогда площадь S трапеции равна: S = 9*9 = 81 см².