Воспользуемся формулой для длины биссектрисы
l=\frac{2ab\cos (\gamma/2)}{a+b}.
l=\sqrt{2}; \gamma=90^{\circ}; \cos(\gamma/2)=\frac{\sqrt{2}}{2}\Rightarrow
\sqrt{2}=\frac{ab\sqrt{2}}{a+b}\Rightarrow a+b=ab;
(a+b)^2=(ab)^2; a^2+b^2+2ab=(ab)^2=0; (ab)^2-2(ab)-48=0
(ab-8)(ab+6)=0
ab=8; S=\frac{ab}{2}=4
Ответ: 4
Пояснение. a^2+b^2=c^2=(2m)^2=(4\sqrt{3})^2=48
Нажми, чтобы рассказать другим, насколько ответ полезен
Подробнее - на Znanija.com - znanija.com/task/31807829#readmore
Ответ:
90 см²
Объяснение:
Дано: АВСД - трапеция, ∠А=∠В=90°, АВ=5 см, СД=13 см. АД=2ВС. Найти S(АВСД)
Пусть основание ВС=х см, тогда АД=2х см. Проведем высоту СН.
АН=ВС=х см, тогда ДН=2х-х=х см.
Рассмотрим ΔСДН - прямоугольный. По теореме Пифагора
ДН=√(СД²-СН²)=√(169-25)=√144=12 см.
АД=2ДН=12*2=24 см
ВС=12 см.
S=(ВС+АД):2*СН=(12+24):2*5=90 см²
оТВЕТ ПИШЕТЕ ВЕРНЫЙ. ДЕЙСТВИТЕЛЬНО. ИСХОДНОЕ положение линейки подчиняется теореме ПИфагора. т.е. есть гипотенуза=20, есть катет=12, находим второй катет
√(20²-12²)=√((20-12)(20+12))=√(8*32)=√(4*64)=2*8=16.
Меняем теперь положение линейки, опуская ее верх на 1см. Теперь линейка-ка то осталась той же длины, т.е. 20см, а другой катет изменился 16-1=15, и новый ответ найдем так √(20²-15²) -12=
√((20-15)*(20+15)) -12=√(5*35)-12=5√7-12
Ответ В) 5√7-12
1.А Угол CED равен 60 градусов тк угол С равен 90 градусов и угол D равен 30 градусов (90 - 30 = 60 - по св-ву углов прямоуг тр-ка)
ТК EF - биссектриса, то Угол DEF равен 60/2=30, но угол FDE равен 30 гр по условию, значит тр-ник DFE - равнобедренный
Б. Пусть FE - <em>α , тогда </em>FD=EF=α, тк тр-ник DFE - равнобедренный
CF лежит против угла в 30 градусов, значит эта сторона равна половине гипотенузы (EF) и равна половине α
Значит FD больше CF в 2 раза
<span><em>Угол между высотой и медианой прямоугольного треугольника АВС, проведенными из вершины прямого угла, равен 24º.. Ч<u>ему равен бóльший острый угол</u> треугольника АВС?</em>
</span>----
Пусть в треугольнике АВС угол С=90º
<em>Высота из прямого угла к гипотенузе делит прямоугольный треугольник на подобные треугольники</em>.
<span>⊿ АВС~⊿ АНС
</span><span>∠АВС= ∠АСН
</span><em>Медиана прямоугольного треугольника, проведенная к гипотенузе, равна половине гипотенузы и образует с катетами равнобедренные треугольники.</em>
<span>В⊿ АМС сторона АМ=МС и </span>∠АСМ= ∠МАС
Пусть угол А=х, тогда угол АСН=х+24.
А так как ∠АСН=∠АВС, то ∠ АВС=х+24º.
<em>Сумма острых углов прямоугольного треугольника равна 90º</em>.
<span>∠А+∠В=90º
</span>х+х+24º=90º
2х=66º
х=33º
∠В=33º+24º=57º