Построили и увидим, что мы имеем:
ПЕРПЕНДИКУЛЯР Н, опущенный с ВЕРШИНЫ ПРЯМОГО УГЛА С НА ГИПОТЕНУЗУ АВ;
А значит надо вначале найти сторону катет АС:
Если косинус А =2/3, то составим пропорцию:
12/АС=2/3;
Откуда АС=12*3/2=18;
По теореме Пифагора находим
Н^2=АС^2-АН^2=18^2-12^2=180 ;
Значит по соотношению в прямоугольном треугольнике высота-перпендикуляр опущенный с вершины прямого угла на гипотенузу равен
Н^2=АН*НВ=180;
12хНВ=180;
Значит НВ=180/12=15;
АВ=АН+НВ=12+15=27;
Ответ АВ=27
Обозначаете середину СД как О и от всех вершин строите через нее лучи, на которых отмечаете новые точки АО=ОА1, В0=ОВ1 и тд Рисунок во вложении
1- д 90 градусов
2-б 30 градусов
3-г 60 градусов
4-в 45 градусов
Ответ:
22 см
Объяснение:
Дано: окружность с центром О
АВ и СК - диаметры
СВ = 10 см - хорда
ОВ = 6 см
Найти: Р
Решение:
ОВ=ОА - по свойству диаметра
ОВ=ОА=6(см)
АВ=6+6=12(см)
АВ=СК- диаметры
АВ=СК=12 (см)
СО=ОК=6(см)- по свойству диаметра
<АОК=<СОВ - вертикальные
∆АОК=∆СОВ - по двум сторонам и углу между ними
СВ=АК=10 (см) - из равенства треугольников
Р=АО+ОК+АК
Р=6+6+10=22(см)