1) Тут все даже не просто, а ООООЧЧЧЧЕНЬ просто.
Если P - точка пересечения BM и AD, то BP/PM = AB/AM = AB/(AC/2) = 5/2;
2) Тут немного сложнее, но тоже не слишком.
Пусть MK II BC; точка K лежит на AD.
Тогда KD = AD/2; KM/DC = 1/2;
треугольники BPD и KPM подобны, то есть KM/BD = KP/DP;
по условию BD = DC*5/4; то есть KM/BD = KM/(DC*5/4) = 2/5;
то есть KP/DP = 2/5; KP + DP = AD/2;
если считать, что KP = 2*x; то DP = 5*x; AD/2 = 7*x; AD = 14*x; AP = AD - DP = 14*x - 5*x = 9*x; откуда AP/PD = 9/5; вроде так.
Расстояние между концами диаметра
d = √((-3+2)²+(2-2)²) = √1 = 1
r = d/2 = 1/2
Если окружность касается координатных осей - то она находится от них на расстоянии r
x₀ = 1/2 или x₀ = -1/2,
y₀ = 1/2 или y₀ = -1/2.
Но в 4-й четверти x>0, y<0
x₀ = 1/2, y₀ = -1/2.
И уравнение окружности
(x-1/2)²+(y+1/2)² = (1/2)²
Ответ:
АХ=3 ВХ=7 СХ=2
Объяснение:
Допустим, точка Х расположена на отрезке АВ через 3 см от точки А, значит отрезок АХ = 3 см;
ХС = АС - АХ = 5 - 3 = 2 см;
BX = ВС + СХ = 5 + 2 = 7 см.
3+2+7=12.
Точка Х может располагаться или перед точкой С, или после С.
Прошу прощения за плохое качество