В прямоугольном треугольнике ABC, угол А=90 градусов, АВ=20 см, высота АД=12 см. Найти надо АС и COS угла С.
ДВ²=АВ²-АД²= 400-144=256 по Пифагорской теореме.
ДВ=16
Треугольники АВС и ДВА подобны по первому признаку подобия (два угла равны угол В-общий, угол АДВ=углу ВАС=90 градусов), следовательно
ДВ/АВ=АВ/СВ
16/20=20/СВ
СВ=20*20:16=25
АС"=СВ"-АВ"=25"-20"=625-400=225
АС=15
CosC=АС/СВ=15/25=3/5
Cos C=3/5
Пусть дан треугольник АВС, и пряммые АВ и АС параллельны плоскости Альфа. Пряммые АВ и АС пересекаются. Через них можно провести плоскость и причем одну. Пусть плоскость которая проходит через пряммые АВ и АС - плоскость Бэта. Тогда она параллельна плоскости Альфа, так как две пересекающиеся пряммые этой плоскости параллельны плоскости Альфа.
Далее. Две точки В и С принадлежат плоскости Бэта (так как принадлежат пряммые АВ и АС), значит и вся пряммая ВС принадлежит плоскости Бэта. Любая пряммая плоскости Бэта паралельна плосоксти Альфа (так плоскосит параллельны), в частности пряммая ВС параллельна плоскости Альфа.
Ответ: третья пряммая тоже паралелльна плоскости
Рассмотрим ΔАВЕ - прямоугольный, ∠ВАЕ=∠ВЕА=45° по свойству острых углов прямоугольного треугольника. Значит, ΔАВЕ - равнобедренный, АВ=ВЕ=5. Тогда ЕС=17-5=12. Найдем ЕД из ΔСДЕ по теореме Пифагора:
ДЕ=√(СЕ²+СД²)=√(144+25)=√169=13 (ед.)
Ответ: 13.