Задача 1
Катет лежащий напротив угла 30 град. равен половине гипотенузы.
7,6*2=15,2 см длина гипотенузы.
Ответ 15,2 см
Задача 2.
Если угол при вершине в равнобедренном треугольнике = 120, то углы при основании =(180-120)/2=30град.
Основание это искомая гипотенуза =5*sin 30=5*1/2=2.5 см
Ответ 2,5 см
Задача 3.
Третий угол будет равен 30 град.
Мы знаем что катет лежащий напров угла 30 град равен половине гипотенузы. Составим уравнение.
х-длина гипотенузы
х/2 - длина катета
х+х/2=36
2х+х=72
3х=72
х=24 см длина гипотенузы
24/2=12 см меньший катет
Ответ 12 см.
Х - основание
1,5х - боковая сторона
2 · 1,5х + х = 48
3х + х = 48
4х = 48
х = 48 : 4
х = 12 (см) - основание.
1,5 · 12 = <span>18 (см) - боковая сторона</span>
С(3;2),D(1;-6),O(0;y)
СО=DO
(0-3)²+(y-2)²=(0-1)²+(y+6)²
9+y²-4y+4-1-y²-12y-36=0
-16y=24
y=-24/16=-1,5
O(0;-1,5)
1)Один острый угол прямоугольного треугольника х, второй (7/3)х.
Сумма острых углов прямоугольного треугольника 90°.
х+(7/3)х=90
(10/3)х=90
х=27
(7/3)х=(7/3)·27=63
Ответ. 63° - больший острый угол.
2) В треугольнике ABC угол С равен 90°, CH высота, угол А равен 48°. угол СВА равен 42°
Так как сумма острых углов прямоугольного треугольника АВС равна 90.Угол ВСН равен 48° , а сумма острых углов прямоугольного треугольника СВН равна 90°
3) В треугольнике АВС угол А равен 21°, угол В равен 82°, СН -высота.
угол АСН равен 90°-21°=69°
угол ВСН равен 90°-82°=8°
Разность углов АСН и ВСН равна 69°-8°=61 °
4) В треугольнике АВС угол А равен 70°, СН-высота, угол ВСН равен 15°
Угол СВН равен 90°-15°=75°
угол АСВ равен 180°-70°-75°=35°