это значение берут из таблиц, например из таблиц Брадиса
или модно посчитать на инженерном калькуляторе (который сейчас встроен в люом компютере
Пуск->Все программы->стандратные -> Калькулятор-> (Вібрать режим Инженерный))
или просто более навороченном калькуляторе*)
тангенс прямоугольного треугольника определяется как отношение противоположного катета к прилежащему катету
т.е. если известно, что противолежащий катет 10.8048, а прилежащиий 12 то его тангенс равен 10.8048/12=0.9004
Площадь параллелепипеда равна произведению площади основания на высоту. так как он прямой, то высота равна сторонам граней, то есть АА1, ВВ1, СС1, ДД1. Так как сторона АД меньшая, то диагональ АС тоже меньшая. Чтобы найти площадь параллелограмма АВСД, нужно знать его высоту АН. Высота АН образует два прямоуг треугольника АДН со стороной АД=17 и АСН со стороной АС=39. По теореме Пифагора из АДН => АД*АД=АН*АН+ДН*ДН, а из АСН=>АС*АС=АН*АН+СН*СН, откуда АН*АН=АД*АД-ДН*ДН и АН*АН=АС*АС-СН*СН. Обозначим ДН через х, тогда НС=ДС-х=28-х. Приравниваем выражения высоты АН, получаем
АД*АД-ДН*ДН=АС*АС-СН*СН, следовательно 17*17-х*х=39*39-(28-х)*(28-х)
решая уравнение находим, что х=8=ДН. Из треуг АДН(где АД=17 и ДН=8) находим АН=15. То есть площадь параллелограмма АВСД(основание параллеллепипеда) равна АН*ДС=15*28=420.
Диагональ А1Д образует прямоуг треугольник Д1ДА1, где А1Д1=АД=17, а противоположный угол=45. Отсюда сторона ДД1 (прилежащий к углу катет) находится по формуле ДД1=А1Д1*tg45=17*1=17
Получаем площадь АВСДА1ВС1Д1=17*420=7140
Исходим из условия, что вертикальная грань - равнобедренный треугольник. Тогда угол при основании равен (180° - 120°)/2 =30°.
Высота Н этой грани является высотой пирамиды.
Н = (6/2)*tg30° = 3*(1/√3) = √3 дм.
Площадь основания So = a²√3/4 = 36√3/4 = 9√3 дм².
Тогда объём равен: V = (1/3)SoH = (1/3)*9√3*√3 = 9 дм³.
1)40:8=5см
2)5×5=25см
Ответ: 25 см