Острый угол - 56 градусов.
Способов решения задачи - очень много.
Вариант:
AQ перпендикулярен DC. AB || DC как противоположные стороны ромба. Следовательно, QA перпендикулярен AB или угол QAB = 90 градусов.
Отсюда угол BAP =угол QAB - угол PAQ = 90 - угол PAQ = 90 - 56 = 34 град.
Треугольник APB - прямоугольный, сумма его острых углов всегда равна 90 град, то есть
угол BAP + угол PBA = 90
Отсюда искомый острый угол ромба
угол PBA = 90 - угол PAB = 90 - 34 = 56 град.
<span>проведите диагонали в ромбе, они взаимно перпендикулярны, диагональ АС делит угол между двумя высотами пополам, рассмотрим треугольник АРС, угол А=56/2=28, угол С = 180 - 90 -28=62, рассмотрим треугольник АВС, он равнобедренный, угол А = углу С = 62, угол В = 180 -62-62 =56 градусов, отсюда вытекает следствие, что угол между двумя высотами ромба проведенных из вершины тупого угла равен острому углу ромба</span>
∠AOD=180°
∠BOD=∠AOD-∠AOB=180-24=156°
12-5-5=2см
т. к. боковая сторона в равнобедренном треугольнике равна еще одной стороне, и чтобы найти основание необходимо из периметра вычесть сумму боковых сторон