1. обозначь острые углы, как цифры 1 и 2, а тупые 3 и 4. острый угол равен 33 градусам, 2 угол тоже будет равен 33 градус (т.к. они накрест лежащие углы). угол 1 и 3 ( ну они смежные) угол 3 = 180 градусов - 33 градуса =147
т.к. 3 и 4 накрест лежащие углы то 4 угол = 3 углую, т.е. 147
3. т.к. биссектриса DM делит угол CDE пополам, то угол МDN = 34 градуса
СD и AВ( прямая, проведенная через точку М) и секущей DM уголCDM = углу DMN ( т.к. они накрест лежащие углы) = 34 градуса.
сумма углов треугольника равна 180 => угол MND = 180 - DMN + MDN = 180 - 34 +34 = 180 - 68 = 112 градусов
Ответ: угол MND = 112 , NMD = 34 , MDN = 34
Решение. ( см. рисунок)
Обозначим К и Т - точки касания окружности со сторонами АВ и АС соответственно.
Так как АО-биссектриса угла А, то угол КАО равен углу ТАО.
Обозначим
по катету (ОК=ОТ=r вписанной окружности) и острому углу.
Из равенства треугольников следует, что OD=ОЕ.
Найдем в треугольнике АDO
Угол ADO смежный углу KDO
Треугольник ADO- равнобедренный, острые углы равны α,
AD=DO,
DO=OE
Аналогично докажем, что АЕ=ЕО.
AD=DO=OE=AE
V(41^2-9^2)=v(1681-81)=v1600=40 это кусок большего основания который высота отсекает
пусть меньшее основание-х тогда большее основание-х+40 тогда уравнение
(x+x+40)/2=26
2x+40=52
2x=12
x=6 меньшее основание
6+40=46 большее
основные формулы:
Vпризмы= S*h
s-площадь основания
h- высота призмы