Трапеция АВСД: АД=17, ВС=4, АВ=12, СД=5
Середина основания АД точка Е: АЕ=ЕД=АД/2=17/2=8,5
Середина основания ВС точка К: ВК=КС=ВС/2=4/2=2
Проведем прямую ВМ, параллельную СД, значит ВМ=СД=5, ВС=МД=4
АМ=АД-МД=17-4=13
Полупериметр ΔАВМ
р=(АВ+ВМ+АМ)/2=(12+5+13)/2=15
Площадь ΔАВМ по ф.Герона
Sавм=√15(15-12)(15-5)(15-13)=√15*3*10*2=√900=30
Опустим из К высоту КН трапеции на сторону АД, она же равна и высоте ВН₁ ΔАВМ (Н₁Н=2)
Тогда Sавм=АМ*ВН₁/2,
ВН₁=КН=2Sавм/АМ=2*30/13=60/13
Из прямоугольного ΔАВН₁:
АН₁=√(АВ²-ВН²)=√(144-3600/169)=√20736/169=144/13
АН=АН₁+Н₁Н=144/13+2=170/13
АН=АЕ+ЕН, откуда ЕН=АН-АЕ=170/13-8,5=119/26
Из прямоугольного ΔЕКН:
ЕК=√(ЕН²+КН²)=√((119/26)²+(60/13)²)=√28561/676=169/26=6,5
Ответ: 6,5
Угол при основании равен 60 градусов. Если треугольник равнобедренный, то и углы при основании равные и равны они 60 градусов каждый. Сумма углов любого треугольника равна 180 градусов. Найдём угол, который не при основании: 180 - 60 - 60 = 60 градусов. Из это следует, что треугольник равнобедренный. Значит. основание равно 17 см.
Ответ:60°
Объяснение:
А1В и АС лежат в разных плоскостях и не имеют общих точек. Они – <u>скрещивающиеся. </u>
<em> Чтобы найти угол между скрещивающимися прямыми, нужно: Провести прямую, параллельную одной из двух скрещивающихся прямых так, чтобы она пересекала вторую прямую. При этом получатся </em><u><em>пересекающиеся прямые</em></u><em>. Угол между ними равен углу между исходными скрещивающимися.</em>
СD1 ║ BA1 и пересекает АС в т.С. Если провести диагональ АD1 в грани АА1D1D, получим треугольник АD1С, все стороны которого равны между собой ( т.к. <u>диагонали равных квадратов равны</u>). Следовательно. углы ∆ АСD1 равны, их градусная мера 180°:3=60°.
<u>Градусная мера угла между прямыми ВА1 и АС равна 60°.</u>
∠3 + ∠2 = 180°, так как эти углы - внутренние односторонние при пересечении параллельных прямыхm и n секущей с.
∠3 = 180° - ∠2 = 180° - 137° = 43°
∠1 = ∠3 = 43° как вертикальные.