1 случай. Точка A лежит внутри окружности с центром в точке O или на окружности. Докажем, что середины хорд, проходящих через A, образуют окружность с диаметром AO. Если точка M лежит на этой окружности, то угол OMA прямой как вписанный и опирающийся на диаметр, а тогда M - середина хорды, проходящей через A и M. В обратную сторону так же просто.
2 случай. Точка A лежит вне окружности. Тогда середины хорд, проходящих через A, образуют часть окружности с диаметром AO, лежащей внутри нашей. Доказательство аналогично.
<span>АВ-гипотенуза, АС - прилежащий катет, ВС - противолежащий. Находишь ВС = 25-16 (и корень из всего этого) = 3. синус угла А = 3/5</span>
396÷18=22 высота т. к основание уже есть
S=a*b*cos a=9*12*cos30=9*12*1/2=9*6=54
Площадь 54
Рисунок к задаче в прикрепленном файле.
Рассмотрим ΔАВН. Он прямоугольный, т.к. ВН⊥АС.
В треугольнике ΔАВН ∠А = 30°, а лежащий напротив него катет ВН = 8 (по условию).
В прямоугольном треугольнике катет, лежащий напротив угла в 30° в два раза короче гипотенузы. Следовательно АВ = 2*ВН = 2*8 = 16 (см).
По теореме Пифагора
В равнобедренном треугольнике высота, проведенная из вершины, также является и медианой. Значит ВН - медиана и АН = НС =
АС = 2*АН = (см)
Ответ: АС = см