(360-120)/2=120°
а+в=360-2*120=120°
АОС-120°
BOD-130°
COE- 110°
COD- 60°
Центр квадрата лежит в точке пересечения его диагоналей. для начала найдем длину диагонали квадрата (по Т. Пифагора):
d= 4√2
диагональ квадрата делится точкой пересечения пополам, значит ее длина 2√2
теперь так же по Т. Пифагора найдем расстояние от точки А до вершины, например В:
АВ=√(2√2)²+(2√2)²=√16=4 см.
<span>Есть у нас трапеция АВСD. У нее есть высоты BH1 и CH2, и диагональ АС. </span>
<span>1. Поскольку высоты BH1 и CH2 параллельны, отрезок Н1Н2 = ВС. </span>
<span>2. Поскольку трапеция равнобедренна, то АН1 = DH2 </span>
<span>3. Полусумма оснований (АD + BC)/2 = (АН1 + H1H2 + H2D + ВС)/2 = (2 * АH1 + 2 * H1H2) /2 = АH1 + H1H2 = АH2. </span>
<span>4. Треугольник АСН2 - прямоугольный, поскольку СН2 перпендикулярна к АН2. Из теоремы Пифагора АH2 = √(АС² - CH2²) = 8. </span>
<span>5. Площадь равна произведению высоты на полусумму оснований S = АH2 * CH2 = 8 * 6 = 48</span>
Если треугольники равны, то равны соответствующие стороны
AB=DE=KM=9
BC=EF=MN=8
третью сторону вычислю через периметр
Он в любом из этих треугольников
P=9+8+x=24, где х третья сторона
x=24-9-8=7
тогда AC=DF=KN=7