Пусть трапеция имеет вершины АВСD. Угол D=45(гр.) ну он тип угол при основании.
По свойству прямоугольной трапеции наименьшая боковая сторона - это сторона при прямом угле. Т.е. АВ=9. То есть и высота в трапеции равна 9.
Строим высоту СН=9( только что писала почему равную 9). И рассматриваем треугольник СDH: угол CHD - прямой, угол D=45(гр.), следовательно и угол HCD=45(гр.)(180-90-45=45)
Значит, треугольник СНD - равнобедренный и СН=НD=9.
Найдем, чему равна боковая сторона СD. По теореме Пифагора: CD^2=81+81=162==> CD= 9 корней из 18 ( не могу вставить формулу: выглядит примерно так 9\|18'
Известно, что сумма боковых сторон трапеции равна сумме оснований: тогда сумма оснований равна ==> 9+(9\|18':2)+(9\|18':2) (НD+AH+BC)
А площадь трапеции равна: 1/2 суммы оснований умноженная на высоту, т.е. (НD+AH+BC)*CH= 1/2(9+9\18')*9=4,5*(9+9\|18')=4,5*9+4,5*9\|18'=40,5+40,5\|18'
Может это как то преобразуется, но по-моему решается так..;)
Чтобы определить вторую высоту нужно найти площадь треугольника
см²
обозначим искомую высоту за
и выразим эту же площадь через другую сторону
ответ: 1
Вот такой смешной ход, превращающий задачу в устную.
Если 22,4 и 12,6 разделить на 1,4 то получится 16 и 9. То есть можно найти ответ для случая, если отрезки гипотенузы равны 16 и 9, а потом умножить его на 1,4 :))
если отрезки равны 16, и 9, то высота к гипотенузе равна <span>√(</span>16*9) = 12; отсюда большой катет равен 20, малый 15, гипотенуза делится биссектрисой в пропорции 15/20 = 3/4, то есть отрезки равны 3/7 и 4/7 гипотенузы длиной 25.
То есть 75/7 и 100/7. Осталось умножить на 1,4, получается 15 и 20 :)
На самом деле, можно было сразу сообразить, что треугольник "египетский" (то есть подобный треугольнику со сторонами 3,4,5 - в таком треугольнике отношение отрезков, на которые высота делит гипотенузу, равно тоже (3/4)^2 = 9/16 = 12,6/22,4; этого достаточно для подобия :) ), его гипотенуза 22,4 + 12,6 = 35; откуда сразу следует ответ.
Если в трапецию можно вписать окр., тогда сумма боковых сторон равна суммк оснований. Т.е. средн. линия = 30/2=15
Описание задачи в закрепе на листе.