Точки А (-5;-4), В (-4;3), С (-1;-1) являются вершинами треугольника АВС.
докажите, что треугольник АВС равнобедренный.
Длина стороны |АВ| = √((Bx - Ax)² + (By - Ay)²) = √((-4 - (-5))² + (3 - (-4))²) = √50 = 5√2 ≈ 7.07;
Длина стороны |ВC| = √((-1 - (-4))² + (-1 - 3)²) = 5;
Длина стороны |CA| = √((-5 - (-1))² + (-4 - (-1))²) = 5;
|ВC| = |CA| Это значит, что треугольник АВС равнобедренный;
составьте уравнение окружности, имеющий центр в точке С и проходящий через точку В.
Принадлежит ли окружности точка А?
центр в точке С (-1;-1); радиус 5; уравнение окружности; (x+1)²+(y+1)²=5²;
проверяем: принадлежит ли окружности точка А; подставляем её координаты в уравнение;
((-5)+1)²+((-4)+1)²=5²; 25 = 25; точка А принадлежит окружности;
найдите длину медианы, проведенной к основанию треугольника.
Найдем точку F - середина стороны AB: Fx = (-5 + (-4))/2 = -4.5; Fy = (-4 + 3)/2 = -0.5;
F (-4.5; -0.5); С (-1;-1); Длина медианы CF: |CF| = √((-3.5)²+0.5²) = √12.5 = 5/√2 ≈ 3.54;
составьте уравнение прямой, проходящей через точки А и С.
<span>уравнение прямой АС: (x+1)/4 = (y+1)/3; y = 3x/4 - 3/4;</span>
• ABCD – это основание четырехугольника;
• M – вершина;
• MО – высота пирамиды (где О –
это точка пересечения диагоналей);
• МN – высота боковой грани.
Sосн = а² = 36 (где а – это сторона основания)
а = √36 = 6 (см)
Sполн = Sосн + Sбок = 96 (см)
Sбок = Sпол + Sосн
Sбок = 96 - 36=60 (см²)
Sбок = 1 : 2 * Р * L (где Р – это периметр основания, а L – высота боковой грани)
Росн = 4 * 6 = 24
S = 1: 2* 24 * L = 60
12 * L = 60
L= 60 : 12
L = 5
Используя прямоугольный треугольник МОN (где угол О = 90°) по теореме Пифагора найдём, что:
КО = Н
ОМ = 1 :2
а = 3 (см)
КМ = L = 5
КО² = КМ² - ОМ²
КО² = 5² - 3² = 25 - 9 = 16
КО = √16 = 4
Н = 4 (см)
Ответ: 4 см.