В ∆ABO; угол ABO= 90°
Можем найти сторону ОВ за теоремой Пифагора
ОВ²=25²-20²
ОВ²=625-400=225
ОВ²=15²
ОВ=15
ОВ=OC=15 — как радиусы
B ∆ACO; угол ACO=90°
Можем найти сторону AC за теоремой Пифагора
AC²=25²-15²
AC²=625-225=400
AC²=20²
AC=20
Ответ:OC=15,AC=20
<span>треугольники МОК и МСН подобны по двум углам...
1) --- они прямоугольные по построению...
2) углы СМН = ОМК --- МК-высота равнобедренного треугольника, проведенная к основанию, => МК и биссектриса и медиана...
СН / ОК = МН / МК
СН = ОК*МН / МК
ОК = ОР / 2 = 6
МК^2 = MP^2 - KP^2 = (MH+PH)^2 - OK^2 = 100-36 = 64
MK = 8
CH = 6*6 / 8 = 9/2 = 4.5</span>
Средние линии пропорциональны сторонам треугольника. Поэтому они относятся друг к другу так же: 4:5:6.
4 + 5 + 6 = 15 частей - периметр треугольника, образованного средними линиями.
3- : 15 = 2 см - приходится на одну часть.
2 × 4 = 8 см - 1 средняя линия
2 × 5 = 10 см - 2 средняя линия
2 × 6 = 12 см - 3 средняя линия
<span>По теореме Пифагора, ac=2. Tg это отношение противолежащего катета к прилежащему, то есть 3/2</span>
Рассмотрим основание повнимательнее. Трапеция ABCD, AD = 42; BC = 22; AB = CD = 26; опустим препендикуляр на AD из точки В, это ВК. Треугольник АВК - прямоугольный с катетом АК = (42 - 22)/2 = 10 и гипотенузой АВ = 26, отсюда ВК = 24; (Пифагорова тройка 10,24,26)