Биссектриса параллелограмма отсекает от него равнобедренный треугольник. Это свойство основано на равенстве накрестлежащих углов при пересечении параллельных прямых (стороны параллелограмма) секущей ( биссектриса)
Пусть биссектриса угла А будет АМ, угла В - ВК.
Угол ВАМ=углу АМD как накрестлежащие, Но ВАМ=МАD как равные половины угла А. Поэтому в ∆ АDM углы при АМ равны, и он - равнобедренный. DM=AD=5см
На том же основании ВК отсекает равнобедренный ∆ ВСК. где СК=ВС=5 см
СD=AB=12 см
Тогда на стороне CD отрезки
DМ=5 см, СК=5 см, МК=12-(5+5)=2 см
Грани пирамиды - равнобедренные тр-ки с боковыми сторонами по 25 и основанием 14. Площадь грани можно найти по формуле Герона:
S=корень из р*(р-а)*(р-в)*(р-с), где р - полупериметр тр-ка со сторонами
а, в, с. В нашем случае а=в, S=корень из р*(р-а)^2*(р-с)=(р-а)*корень из р*(р-с); р=(25*2+14)/2=32; S=(32-25)*корень из 32*(32-14)=7*корень из
32*18=7*корень из 16*2*2*9=7*4*2*3=168; Sбоковая=168*6=1008. 2 способ:;
Sбоковая=р*l(эль)/2, где р - периметр основания, l - апофема, высота боковой грани. р=14*6=84; по т.Пифагора высота боковой грани(равнобедренного тр-ка)
l^2=25^2-7^2=625-49=576; l=24, Sбоковая=84*24/2=1008.
Ответ будет 23,8(3). Нужно скинуть бумажку где решение, отпишись. Там просто подменяешь значения и считаешь.
S=1/2*AB*BC*sin(150°)=1/2*10*15*sin(150°)=75*sin(150°)=75*1/2=37,5см^2
Ответ: 37,5см^2
Ответ:
13
Объяснение:
По теореме косинусов a^2=b^2+c^2-2*b*c*cos(a)
Следовательно: BC^2=AB^2+AC^2-2*AB*AC*cos(A)
Подсчитаем: BC^2=9^2+11^2-2*9*11*1/6=169
BC=√169=13