Дано: АВ=36; СД=48; ОН=24
Найти ОК.
Решение:
АН=ВН=36:2=18
ΔОВН - прямоугольный, ВО=R=√(ОН²+ВН²)=√(576+324)=√900=30.
СК=КД=48:2=24
ОД=R=30
ОК=√(ОД²-КД²)=√(900-576)=√324=218.
Ответ 18 ед.
Биссектрисы внутренних углов при параллельных перпендикулярны (сумма внутренних углов 180, сумма их половин 90). Искомый четырехугольник является прямоугольником, его диагонали равны.
Точка K равноудалена от двух пар смежных сторон параллелограмма (так как лежит на двух биссектрисах), то есть равноудалена от противоположных сторон параллелограмма. Аналогично точка M равноудалена от противоположных сторон параллелограмма. Следовательно отрезок КM лежит на средней линии LN. Средняя линия параллелограмма равна боковой стороне. LN=23.
LK - медиана, проведенная из прямого угла, равна половине гипотенузы. LK=17/2. Аналогично MN=17/2.
KM=LN-LK-MN =23-17 =6
якщо координати точки А (x;y), то координати точки А' симетричної їй відносно початку координат A' (-x;-y)
Р = 17+17+24+40 = 98
высота = 480*2 и : на 24+40 = 15
высота = 15
боковые сторона трапеции находип по теореме пифагора = 17