1) ∠ABC=∠ABD, BC=BD
△ABC=△ABD (по двум сторонам и углу между ними, AB - общая сторона)
2) ∠NMK=∠PKM, NM=PK
△NMK=△PKM (по двум сторонам и углу между ними, MK - общая)
3) RO=TO, OS=OP
∠ROS=∠TOP (вертикальные углы)
△ROS=△TOP (по двум сторонам и углу между ними)
4) ∠E=∠N, EO=NO
∠EOF=∠NOM (вертикальные углы)
△EOF=△NOM (по стороне и прилежащим к ней углам)
5) ∠Q=∠F, QM=PM
∠QMK=∠PMF (вертикальные углы)
△QMK=△PMF (по стороне и прилежащим к ней углам)
6) ∠BAC=∠DCA, ∠ACB=∠CAD
△BAC=△DCA (по стороне и прилежащим к ней углам, AC - общая)
∠B=∠D, BA=DC (соответствующие элементы равных треугольников)
∠BAC-∠CAD=∠DCA-∠ACB <=> ∠BAO=∠DCO
△BAO=△DCO (по стороне и прилежащим к ней углам)
7) EM=FN, ∠EMN=∠FNM
△EMN=△FNM (по двум сторонам и углу между ними, MN - общая)
∠E=∠F, ∠MNE=∠NMF (соответствующие элементы равных треугольников)
∠EMN-∠NMF=∠FNM-∠MNE <=> ∠EMP=∠FNP
△EMP=△FNP (по стороне и прилежащим к ней углам)
8) AB=AD, BC=DC
△ABC=△ADC (по трем сторонам, AC - общая)
Ответ 60 и 30 градусов
Так как одна из диагоналей равна стороне ,а все стороны ромба равны друг другу,значит,эта диагональ образует со сторонами равносторонний треугольник. Угол равносторонего треугольника -180/3, т,е 60градусов
по скольку диагонали ромба делят его углы по палам ,то один из углов еще разбивает надвое-60/2т,е 30градусов
Потому что два треугольника АДС и ВДС равны по двум сторонам и углу между ними. А из равенства треугольников следует равенство соответствующих сторон и углов
Первое посчитать не могу так как нет числовых данных, но если они есть то вычисляй так: KL/2= расстояние от точки L до прямой AN
ответ на второе задание: <span>A,C,D,E</span>