Основания призмы будут вписаны в круги (сечения шара), равноудаленные от центра шара.
Радиус окружности, описанной вокруг правильного шестиугольника, равен его стороне. Значит радиусы сечений равны по 5.
Высота призмы равна расстоянию между сечениями.
По теореме Пифагора находим расстояние от центра шара до сечения:
d = √(64 - 25) = √39
Значит, высота 2√39
Номеров заданий не видно, поэтому:
1) КО/ОА=tgА=tg45°=1. Отсюда КО=ОАtgA=3*1=3
КО/МК=sinM=sin60°=√3/2. Отсюда МК=КО/sinM=3/(√3/2)=2√3 (ответ 2)
2) По теореме Пифагора (из ΔМТР) МТ²+РТ²=МР². Отсюда МР=√(МТ²+РТ²)=√(4²+8²)=√(16+64)=√80=4√5
tgP=MT/TP=4/8=1/2 (из ΔМТР)
tgP=MК/МP (из ΔКМР). Отсюда МК=МРtgР=4√5*(1/2)=2√5
По теореме Пифагора (из ΔМТК) МТ²+ТК²=МК². Отсюда КТ=√(МК²-МТ²)=√((2√5)²-4²)=√(20-16)=√4=2
3) По теореме синусов (для ΔАВQ) АВ²=AQ²+BQ²-2AQ*BQcosQ. Отсюда cosQ=(AQ²+BQ²-АВ²)/(2AQ*BQ)=(6²+5²-5²)/(2*6*5)=36/60=0,6
По теореме синусов (для ΔPRQ) PR²=PQ²+RQ²-2PQ*RQcosQ. Отсюда PR=√(PQ²+RQ²-2PQ*RQcosQ)=√((4+6)²+(7+5)²-2(4+6)(7+5)*0,6)=√(100+144-144)=√100=10
Периметр четырёхугольника АВRP равен:
АВ+BR+RP+PA=5+7+10+4=26
Так как стороны равны 5, 12, 13, то это прямоугольный треугольник
<u />
Вот решение, разбирайтесь!
Пусть меньший угол х, тогда больший 9х
х+9х=180
10х=180
х=18
значит меньший угол - 18 угадусов
больший = 18 умноженное на 9 = 162