По условию, BS ┴SA и BS ┴SC , т.е. BS -перпендикуляр к грани SAC и SD = d.Следовательно, искомый объем V=1/3*S(ACS)*BS.<span>В треуг. SAD имеем <SDA =90, <ASD =45, откуда AD=SD=d и S(ACS) = d^2.</span>Далеe, в треуг.BSD имеем <BSD =90, BD=2d*√3/2=d√3 ,<span>откуда BS=√(BD^2-SD^2)=√(3d^2-d^2)=d√2.</span><span>Окончательно находим V=1/3*d^2*d√2=1/3*d^3√2</span>
:) :) :) :) :) :) :) :) :) :) :) :)
Обратим внимание, что 4 см может быть только высота, проведенная к основанию. Именно тогда получим два равных прямоугольных "египетских" тр-ка с катетеами 3 и 4 и гипотенузой 5 дм.
Рассмотрим один из них . Назовем его АВД.
sinA=BD/AB=4/5, cos A=AD/AB=3/5, tgA=BD/AD=4/3, ctgA=3/4
Проведите высоту из угла С к AB, например, CK. В получившемся ΔAKC прямоугольном ∠А=30°, гипотенуза AC=8 см⇒ по теореме о катете, противолежащем углу в 30 градусов CK=1/2*AC=1/2*8=4 см
Средняя линия треугольника параллельна основанию и равна его половине
ЕF:MN=1:2
Треугольники ЕКF и MKN подобны
Площади подобных треугольников относятся как квадраты сходственных сторон
S( Δ EKF) : S (Δ MKN)=(EF)²:(MN)²=1:4
S (Δ MKN)=4· S( Δ EKF)=4·24=96