A - острый угол, BC - меньшее основание
BH - высота, BH=BC=46
BCDH - квадрат (три прямых угла, смежные стороны равны)
BC=CD=HD=46
sinA=BH/AB => 46/AB =23/265 <=> AB=265*2=530
AH=√(AB^2-BH^2) =√(530^2-46^2)=√(484*576)=22*24=528
P(ABCD)= AB+AH+HD+BC+CD =530+528+46*3 =1196
в трапеции ABCD с основанием AB и CD биссектриса угла B перпендикулярна боковой стороне AD и пересекает ее в точке E. В каком отношении прямая BE делит площадь трапеции, если известно, длина отрезка AE в 2 раза больше отрезка DE. (Надеюсь что никто не реши
Т.к. в рб треугольнике стороны, прилежащие к основанию, равны, то основание возьмем за x, а сторону за 0,8x и получим уравнение:
x+0,8x+0,8x=78. 2,6x=78. x=78/2,6. x=30. 0.8x=.24