Сумма углов четырехугольника = 360°
4х + 5х + 7х + 8х = 360
24х = 360
х = 360/24
х = 15
Наибольший угол = 8х = 8 * 15 = 120°
<em>В треугольнике ABC угол С равен 90 градусов, СH-высота, AB=16, sinA 3/4. <u>Найдите AH</u></em>
sinA =ВС:АС
ВС:АВ=3:4
ВС:16=3/4
4ВС=48
ВС=12
<em>Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом и высотой</em>.
ВС²=АВ*ВН
144=16*ВН
ВН=9
<span>АН=АВ-ВН=16-9=7</span>
Решения<span>; В триугонику АВС -прямоуголний </span>
Перенесем одну диагональ параллельно в другую вершину, получившийся треугольник будет иметь площадь равную площади трапеции
Вычислим площадь треугольника по формуле Герона
s= √ p(p - a) (p - b) 9p - c) , где p = (10 +17 + 9)/ 2 = 18
s = √ 18*(18 - 17) (18 - 9) (18 - 10) = √ 18*1 *9 *8 = √9 * 2 * 8 * 9 = 3* 4 * 3 36