Построим правильную треугольную
призму АВСА1В1С1. Проведем диагональ боковой поверхности АВ1
Ребро (высота) данной призмы ВВ1=√(АВ1^2-AB^2)= √(10^2-6^2)= √(100-36)= √64=8 см.
Площадь боковой поверхности призмы
равна S(б)=P*h (где P – периметр основания призмы, h – высота призмы)
Так как призма правильная то:
P=3a (где а – сторона треугольника)
Р=3*6=18 см
S(б)=18*8=144 кв. см.
Полная площадь призмы равна S=S(б)+2S(ос) (где S(ос) – площадь основания).
<span>Площадь правильного треугольника (площадь
основания) находим по формуле S= (√3*a^2)/4</span>
S= (√3*6^2)/4=(√3*36)/4=9√3 см
S=144+2*9√3=144+18√3 см
Можно так: S<span>=144+2*15.59= (приблизительно)
175.18 см.</span>
Радиус опианной окружности около треугольника АВС равно R=3√3/sin60
R=3√3/√3/2=3*2=6
Ответ 6
Нету. видно же.но только так не пиши. а напиши по математически
2a) ab=6*корень2*сos45=6
2б) ab=-4*3+1*(-4)+3*0=-12-4=-16
3a) сosA=(-1/2*1+0+0)/((корень((-1/2)^2+(1/2)^2+(-1/корень2)^2)*корень1)=-1/2
А=120
сosВ=(0+1/2*1+0)/((корень((-1/2)^2+(1/2)^2+(-1/корень2)^2)*корень1)=1/2
В=60
сosС=(0+0+1/корень2*1)/((корень((-1/2)^2+(1/2)^2+(-1/корень2)^2)*корень1)=1/корень2
С=45
4) сosA=(m-4+6)/(корень(1+16+9)*корень(m^2+1+4))=
(m+2)/(корень(26)*корень(m^2+5))
сosA>0
m+2>0
m>-2
A<90 острый
сosA=0
m+2=0
m=-2
A=90 прямой
сosA<0
m+2<0
m<-2
A>90 тупой
S=6 x s^2
s-это сторона куба
S=6 x 5^2=6x25=150