Дано: АВСД - трапеция, ∠А=∠В=90°, ВС=14 см, СД=15 см. Найти АД.
Проведем высоту СН=АВ=9 см. Найдем ДН по теореме Пифагора из ΔСДН
ДН=√(СД²-СН²)=√(225-81)=√144=12 см.
АД=АН+ДН=14+12=26 см.
Ответ: 26 см.
Рисунок самостоятельно начертишь.
1) Рассм треуг АВД, в нем уг В =90*, уг Д=30*, след уг А=60* ( по теореме о сумме углов в треугольнике)
2) В трап АВСД уг Д=60* ( по условию ВД - биссектриса)
3) трап АВСД - р/б так как в ней углы при основании АД равны по 60*
4) Уг СВД=уг ВДА=30* (как накрестлеж при BC||АД и сек ВД), след треуг ВСД - р/б (по признаку) с осн ВД.
5) из 3,4 следует, что АВ=ВС=СД
6) Р(АВСД)= 3*АВ+АД=60 (см)
7) Рассм треуг АВД ( уг В=90* по усл, уг Д=30* по усл). АД=2*АВ (по свойству катета, леж против угла в 30*)
8) на основании пп 6,7) получаем:
3*АВ + 2*АВ = 60 ;
5*АВ=60 ;
АВ=12 (см)
Если на оси z то ее координата имеет вид (0 0 z)
дальше считаем квадрат расстояния от точки А до (0 0 z) и от точки В до (0 0 z)
они равны по условию
2^2+1^2+(4-z)^2=3^2+0^2+(1-z)^2
5+(4-z)^2=9+(1-z)^2
5+16-8z+z^2=9+1-2z+z^2
11=6z
ответ (0;0;11/6)
Решение.
В треугольнике ABD все углы равны, значит, он равносторонний. Все его стороны равны 10.
AB=AD=10.
Поскольку ABCD - параллелограмм, то AB=CD, BC=AD.
Но так как AB еще и равно AD, то все стороны равны...
Значит, треугольники ABD и CBD равны (по трем сторонам).
Формула вычисления площади равностороннего треугольника такова:
S= √3/4 ×а², где а — сторона треугольника.
Sabd=Scbd= √3/4×10²= √3/4×100=25√3.
Площадь ABCD это по сути сумма площадей этих двух треугольников (логично же, да?)
Sabcd= Sabd+Scbd= 25√3 ×2= 50√3.
ОТВЕТ: 50√3, буква В.