По теореме косинусов найдем угол при основании параллелограмма
2ab*cosα = a²+b²-d²
2*13*14*cosα = 13²+14²-15²
cosα = (169+196-225)/364 = 140/364 = 5/13
sinα = √1-cos²α = √(13²-5²)/13² = 12/13
Высота h = a*sinα = 13*12/13 = 12 cм
Ответ: наименьшая высота параллелограмма 12 см
PS В предыдущем решении S - площадь тр-ка, а не параллелограмма
.................a=R√2 4=R√2 R=4/√2
Если из центра окружности, вокруг которой описан правильный шестиугольник, провести две прямые до пересечения с началом и концом одной из сторон шести угольника, мы получим равносторонний (угол между радиусами равен 360 градусов :6 = 60 градусов) треугольник, высота которого равна радиусу окружности.
Как известно, высота, опущенная на сторону равностороннего треугольника, делит ее пополам. Тогда, сторона шести угольника, она же сторона равностороннего треугольника, она же гипотенуза прямоугольного треугольника, один катет которого - радиус окружности, а другой - половина половина гипотенузы, можно вычислить по формуле: а² =r² +(a/2)²; a= 2r/√ 3;
Подставляем значение r=5√ 3; a=10.
Все просто. По свойствам секущей двух параллельных прямых внутренние накрест лежащие углы равны.
Следовательно угол ЕDN равен внутреннему накрест лежащему углу, который в свою очередь равен углу ЕDN по условию. Т.о. треугольник EDN равнобедренный, а значит ЕN=ЕD=3,9.
Тоже рассуждение верно для треугольника МDE. МЕ=ED=3,9.
Значит МN=7,8
∠AOB 105
РЕШЕНИЕ
∠AOD+∠DOB=∠AOB ,ТОГДА AOB=40+65=105