Если площадь боковой поверхности равна S, то площадь одной грани равна S/3. Из формулы площади треугольника можно найти сторону АВ .
S(ABS) = 1/2 AB*L.⇒ AB = S(ABC)*2/L = S/3 * 2/L = (2S)/(3L)
Из треугольника АВС найдем радиус вписанной окружности
ОК = АК* tg 30° = 1/2AB *√3/3 = 1/2 * (2S)/(3L) *√3/3 = S√3/(9L),
cos K= OK/L = (S√3)/(9L²).
Рисунок схематический, но здесь он не очень важен, для реалистичности можно сделать угол N более тупым, а М более острым
равно 5^- 10 х + х^ = 25 - 10 х + х^
Ну вы хотя бы градусы маленькой буквой о обозначали, а не 0.
1) Смежные углы в сумме дают 180°. Один 28°, другой 152°
2) При пересечении двух прямых получаются 2 вертикальных угла
(равны друг другу) и два смежных (в сумме 180°).
Углы равны 70°, 70°, 110°, 110°.
3) Если внешний угол равен 40°, то внутренний 180° - 40° = 140°.
Второй угол равен 30°, а третий 180° - 140° - 30° = 10°
4) В равнобедренном треугольнике медиана - она же биссектриса и высота.
Поэтому боковые стороны AB=BC, сторона BO общая, углы ABO=CBO.
По 2 признаку равенства треугольников (2 стороны и угол) эти треугольники равны.
5) Углы прямоугольного треугольника A = 90°, C = 15°, B = 75°.
Угол В делят на CBD = 15° и ABD = 60°.
Значит, угол ADB = 90° - 60° = 30°. Катет против угла 30° равен половине гипотенузы.
а) Значит, гипотенуза BD = AB*2 = 3*2 = 6 см.
б) Треугольник BDC - равнобедренный с углами B = C = 15°, D = 150°.
Стороны BD = DC = 6 см.
По правилу треугольника, сторона BC должна быть меньше суммы двух других сторон.
BC < BD + DC = 6 + 6 = 12 см.