Из вершин В и С опустим перпендикуляры на нижние основание. Нижние основание разбивается на 3 отрезка. Пусть верхнее основание и боковое ребро равно х. Тогда нижние основание разбито на 2 участка равных х/2 (угол при вершине В в полученном треугольнике 30°) и участку равному х
х/2+х+х/2=20
2х=20
х=10
Верхнее основание равно 10
1. АВС і CDA рівні тому, що якщо у двох трикутників рівні дві сторони, і кут між ними, то відповідно і два трикутника рівні, те саме стосується і 2-гого випадку.
1)Так как диаметры одной окружности всегда равны, а точка О является их центром, значит МО = ОN, РО=ОК. 2) Углы МОК и РОN - вертикальные, значит, они равны. Из всего этого следует, что два этих треугольника равны( по первому признаку равенства треугольников). 3) Угол N и угол М - накрест лежащие при прямых MK и PN. А так как треугольники МОК и PON равны, значит и все их углы равны, то есть накрест лежащие углы равны.
Следовательно MK||PN
ЧЕРТЕЖ ВО ВЛОЖЕНОМ ФАЙЛЕ (ПОМЕЧЕН)
1). Сторона правильного шестиугольника равна радиусу описан. около него окружности. Центральный угол,опирающийся на сторону правильного шестиугольника равен 60 градусов.Значит, длина дуги =πRn⁰/180⁰ =πa*60⁰/180⁰=πa/3.
2). Обозначим прямоугольник АВСД, точка О - точка пересечения диагоналей. Так как АВ в 2 раза меньше диагонали, то угол АСВ=30⁰ (катет,равный половине гипотенузы, лежит против угла в 30⁰). Длина дуги АВ=π*10*30/180=5π/3.
Так как в точке О диагонали деляться попполам, то ΔВСД - равнобедренный и <ОВС=30⁰, значит <ВОС=180⁰-2*30⁰=180⁰-60⁰=120⁰.Тогда <АОД=120⁰(как вертикальный).Длина дуги АД равна π*10*120/180=20π/3.