Длина заданной окружности L, радиус R:
L=2*pi*R=2*pi*6+2*pi*9*(100/360)
сокращаем на 2*pi
R=6+9*(100/360)=6+2.5=8.5
Радиус данной окружности равен 8,5 см
ΔАВС - равнобедренный , АС - основание , ∠В - противолежащий основанию.
По свойствам равнобедренного треугольника:
АВ=ВС - боковые стороны равны
∠А=∠С , т.к. у равнобедренного треугольника углы при основании равны.
Биссектриса АН делит ∠А пополам ⇒ ∠ВАH=∠HAC
ΔАНС : АН=АС - по условию ⇒ равнобедренный.
∠НАС= х , ∠Н=∠С =2х - т.к. углы при основании .
Сумма углов треугольника = 180°
х+ 2х+2х=180
5х= 180
х=180/5 = 36° - ∠НАС
∠Н= ∠С= 36×2= 72 ° ⇒
Углы при основании ΔАВС ∠А=∠С= 72°
∠В= 180° - 72°×2= 180° - 144°=36°
Ответ: ∠В= 36°.
S=1/2*6*4=12
AC²=8²+6²=100
AC=10
AO=10/2=5
P=5+5+6=16
Трапеция получается равнобедренная: боковые стороны равны а, верхнее основание равно а, нижнее основание равно 2а.
Высота равнобедренной трапеции, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований (а+2а)/2=1,5а, а другой — полуразности оснований (2а-а)/2=0,5а<span>.
Значит высота h=</span>√(а²-(0,5а)²)=а√3/2
Площадь трапеции Sт=(а+2а)/2*h=3а/2*а√3/2=3√3*а²/4
Правильный треугольник со сторонами 2а.
Площадь треугольника Sтр=√3*(2а)²/4=<span>√3а²</span>
Отношение Sт:Sтр=3√3*а²/4 : √3*а²=3/4.
Ответ:
130 50 50 130
Объяснение:
накрест леж. углы равны = 50
сумма смежных углов равнва 180 :
180-50 = 130