<em>Через две параллельные прямые можно провести плоскость, и притом только одну</em>. (теорема).
<span>Точки А, А1, В и В1 лежат в плоскости АВВ1А1. Эта плоскость пересекает параллельные плоскости </span>α и β<span>. </span>
<span><em>Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны.</em> </span>
<span>Следовательно, АВ|</span>║<span>А1В1, и четырёхугольник АВВ1А1, противоположные стороны которого параллельны - параллелограмм. </span>
<span><em>В параллелограмме противоположные стороны равны. </em></span>
А1А:АВ=1:3.⇒ АА1=АВ:3=9:3=3
<span>Р (АВВ1А1=2(А1А+АВ)=2•(3+9)=24 см</span>
Смотри в файле , ответ АС =14, это третья сторона
В треугольнике АВС: <A=60°, <C=45°, высота ВН=5 см.
В прямоугольном треугольнике АВН катет АН равен
АН=ВН*tg30° или АН=5*(√3/3) см. Или так:
В прямоугольном треугольнике АВН гипотенуза АВ=2*АН (АН - катет против угла 30°). Тогда по Пифагору 4АН²-АН²=25 или 3*АН²=25.
АН=5√3/3.
В прямоугольном треугольнике СВН угол СВН равен 45°, так как сумма острых углов прямоугольного треугольника равна 90°. Это равнобедренный треугольник и ВН=НС=5 см.
Тогда АС=АН+НС или АС=5√3/3 + 5 = (5√3/3+15)/3 см.
Площадь треугольника равна
S=(1/2)*BH*AC или
Sabc=(1/2)*5*((5√3/3 +15)/3)=25(√3+3)/6 ≈ 118,3/6 ≈19,72 см.
Ответ: Sabc≈19,72 см.