График функции <span> y= -x^2 -4x</span>
АВ²= АС²+ВС²
АВ²= 16·3+16=64
АВ =8
соsВ=ВС÷АВ
соsВ=4÷8=1÷2=0.5
∠В=60°
Пусть ABCD - данный параллелограмм, а A', B', C', D' - точки, в которые переходят A, B, C, D. Т.к. при параллельном переносе плоскость переходит в параллельную ей плоскость (или в себя), то плоскость α'В'С'D' параллельна плоскости αВCD.Т. к. при параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние, то AA' || BB' || CC' || DD' и AA' = BB' = CC' = DD'.Так что в четырехугольнике AA'D'D противолежащие стороны параллельны и равны, а, значит, AA'D'D — параллелограмм. Тогда A'D' = AD и A'D' || AD.Аналогично A'B' = AB и A'B' || AB; C'D' = CD и C'D' || CD; B'C' = BC и B'C' || BC.Т. к. две прямые, параллельные третьей, параллельны, то получаем, что A'D' || B'C', A'B' || C'D'.<span>А, значит, A'B'C'D' — параллелограмм, равный параллелограмму ABCD (т.к. соответствующие стороны равны). Что и требовалось доказать.</span>
Косинус острого угла в прямоугольном треугольнике равен отношению прилежащего катета к гипотенузе:
cos угла A = AH/AC, следовательно AH=AC*cos угла A = 9*0,6 = 5,4
Ответ: AH=5,4 см