Cм. рисунок
Радиус шара равен R
Радиус сечения r
S(сечения)=πr²
πr²=243π
r²=243
По теореме Пифагора ( на рисунке треугольник с синими и красной сторонами)
Квадрат диагонали параллелепипеда равна сумме квадратов основных ребер:
Д² = 14²+в²+с².
Проекции неизвестных ребер на диагональ образуют прямоугольные треугольники, в которых используется свойство:
а² = Д*х, где х - проекция стороны а на гипотенузу (это диагональ параллелепипеда).
Отсюда следует: в² = Д*36, с² = Д*9.
Составляем уравнение:
Д²=14²+36Д+9Д
Д²-45Д-196 = 0 Дискриминант этого квадратного уравнения равен: д²=в²-4ас = 45²-(4*1*(-196)) = 2809
д = √2809 = 53. Д₁ = (-в+д) / 2а = (45+53) / 2*1 = 49
Д₂ =45-53 / 2 = -4 (не принимаем)
Ответ: Д = 49.
Все решение в фото, по свойствам средней линии треугольника.
Разъясним условие. Нам дана прямая l, некоторое расстояние к. Если взять точку А так, чтобы расстояние между взятой точкой а прямой l было равно к, то прямая, проходящая через точку А и параллельная прямой l является геометрическим местом всех точек, удовлетворяющих условию. (Обозначим эту прямую буквой m).
Возьмем точку В, не лежащую на прямой m. Пусть перпендикуляр к прямой l пересекает прямую m в точке С, а прямую l в точке D. CD = k, т.е. чтобы точка В удовлетворяла условию, она должна лежать на прямой m.
угол B = углу D = (360-60-60)/2= 120 ⇒ большая диагональ AC
по т. косинусов:
AC² = 3²+5²-2*3*5*CosB
AC²=9+25-30*Cos120
AC²=34-30*(-1/2)
AC²=49
AC=√49=<u>7 </u>