AC = 8
α = 30˚ => β = 60˚
BD — высота AC
AD — ? CD — ?
Решение.
CB - противолежащий углу α катет. Его отношение к гипотенузе AC равно синусу этого угла:
CB / AC = sinα = sin30˚ = 0.5
Отсюда найдём катет CB:
CB = ACsinα = 8 ∙ 0.5 = 4
Этот катет в треугольнике CBD является гипотенузой. Косинус угла β — это отношение прилежащего катета CD к гипотенузе CB.
CD / CB = cosβ = cos60˚ = 0.5
Отсюда находим первую искомую величину — CD:
CD = CBcos60˚ = 4 ∙ 0.5 = 2
Соответственно, находим AD:
AD = 8 - 2 = 6
Ответ. Отрезки, на которые делит высота гипотенузу, равную 8, если один из углов 30˚, равны 6 и 2.
Медиана - это отрезок прямой, проведённый из угла треугольника и делящий противоположную сторону его на две равные части..
Это отражено и в названии с латыни medium - это "средняя величина, посредник, середина"..
Родственные слова в русском языке - это "медиум", "медиа-издание".
Можно и векторный способ предложить. Наверху трапеции вектор KL , а внизу вектор MN оба слева направо (вспоминаем, кстать, теорему Фалеса).
На боковых сторонах - слева 4 вектора a вверх, а справа - 4 вектора b вниз.
Тогда получаем векторные равенства: AB=a + KL + b, AB= -3a + MN -3b
Умножая первое равенство на 3 и складывая со вторым, получим 3AB + AB = 3KL + MN
Отсюда следует (учитывая коллинеарность), что AB=(3KL+MN<wbr />)/4, AB=(3KL + MN)/4=(3*2+6)/4=12/4<wbr />=3
Два отрезка называются равными, если есть такое движение плоскости (или пространства), которое переводит один отрезок в другой. Движение -- это параллельный перенос, поворот, симметрия или же несколько таких действий, выполненных друг за другом. Если более простыми словами -- если отрезки можно совместить наложением.
Через длину равенство отрезков не определяется, в математике (если не говорить о математике в младшей школе, где "длина -- это померили линейкой") длина сама по себе определяется довольно сложно. Но длина у равных отрезков, конечно, одинаковая, поэтому, может быть, для младшей школы такое определение и сойдёт.
Помнится мне из курса школьной геометрии, что луч обозначается двумя буквами. Поскольку у луча есть начало, но нет конца, буквы надо заключить в квадратную и круглую скобки. Вот пример: [AB). В отличие от луча, прямая обозначается двумя круглыми скобками (АВ), отрезок - двумя квадратными [AB].