Пары отрезков:
ВМ=ВК=4 см, КС=РС=6см, АР=АМ=8см, как касательные, проведенные к окружности из одной точки. Следовательно, периметр треугольника АВС равен Р=2(4+6+8) =36см.
Если он тупоугольный, то его основание будет больше, чем боковые стороны, т.е. боковые стороны по х, а основание х+9, раз периметр 45, составим уравнение х+х+х+9=45 3х=36 х=12 - это две ее стороны боковые, а основание 12+9=21
уголС =180-20-25=135
Радиус описанной окружности = АВ / 2 x sinC = 12 / 2 x корень2/2 = 12 / корень2 = 6 х корень2
См. рис.
Треугольники РСО и ВСА подобны по углу и равному сосотношению двух сторон (угол С общий, РС / ВС = ОС / АС, так как РО || МЕ (так как РОМЕ - квадрат) => РО || АВ, а параллельные прямые PO и AB отсекают на прямых АС и ВС пропорциональные отрезки (Теорема Фалеса), то есть РС / ОС = ВР / АО = ВС / АС => РС * АС = ВС * ОС)
=> АВ / РО = СН / СК
40 см / х см = 24 см / (24 - х) см
40 * (24 - х) = 24х
960 - 40х = 24х
64х = 960
х = 15 (см)
Площадь квадрата равна квадрату его стороны.
Ответ: 225 кв. см