Пусть вписанный четырёхугольник это квадрат АВСД Сторона этого квадрата 8 см+АД=СД. Из прямоугольного треугольника АСД найдём АС по теореме Пифагора АС*АС= 64+64=128 АС= 8 корней из 2 см. АС это диаметр Тогда радиус 4 корня из 2 см. Найдём длину окружности С= ПИ*Д. Где Д - диаметр. С= 8 корней из 2 Пи см. . В этот квадрат вписан круг. Он касается всех сторон квадрата. его диаметром будет сторона квадрата . А радиусом половина стороны R= 4 см. S= пиR*R= пи*16= 16пи кв.см
По теореме косинусов:
АВ^2=AC^2-2*AC*BC*cos135+BC^2(пояснение cos135=√2/2)
Кароче подставляем:
AB^2=7^2-2*7*5*√2*(√2/2)+(5√2)^2=<span>√29
Вроде так)</span>
BD^2=AB^2+AD^2
BD=/(100+576)=26
если опустит высоту СН, то треугольник CDH прямоугольный и CH=DH=10
CD^2=DH^2+CH^2
CD=10/2 (/2 корень из двух)
В треугольнике медиана - биссектриса и высота. Биссектриса делит угол пополам, и если она высота, она создает углы 90 градусов. В треугольнике ABC, где BC - основание, треугольники ABD и BCD равны по стороне и двум прилежащим к ней углам.
Дано: АВ=ВС, СD=DЕ.
Доказать: что угол А=углу Е
Доказательство:
Треугольники DEC и BAC - равнобедренные, углы при их основаниях равны: ∠Е=∠ DCE, ∠A=∠BCA
∠DCE=∠BCA (вертикальные углы) => ∠Е=∠A.