симметрия относительно прямой — это осевая симметрия
Симметрия относительно точки — это центральная симметрия
Ответ:
Объяснение:
Пусть ВД=х, тогда ДА=10-х.
Рассмотрим ΔДВС-прямоугольный, по т. Пифагора ДС²=4²-х².
Рассмотрим ΔДАС-прямоугольный, по т. Пифагора ДС²=8²-(10-х)².
Т.к. ДС²= ДС², то 8²-(10-х)²=4²-х² , 64-(100-20х+х²)=4²-х² ,
64-100+20х-х²=16-х², 20х-х²+х²=16-64+100 , 20х=52 ,х=2,6 .
ВД=2,6 , ДА=10-2,6=7,4 .
Высота, проведенная к гипотенузе, есть среднее пропорциональное между проекциями катетов на гипотенузу, значит СД=√ВД*ДА ,
СД=√2,6*7,4=√19,24
∠1+∠2=180° ( сумма односторонних углов равна 180°)
∠1 : ∠2 = 2:3 ⇒ ∠1=2х , ∠2=3х ,
∠1+∠2=2х+3х=5х ,
5х=180° ⇒ х=36°
∠1=2·36°=72° , ∠2=3·36°=108°