Проведем радиусы в точки касания
Получилось два прямоугольных треугольника
СО- биссектриса угла С
Угол С=112
Угол ВСО=ОСА=56
Угол ВОС=СОА=90-56=34 (св-во острых углов прямоугольного треугольника)
Угол АОВ=68 (центральный)
Дуга АВ=68
АС-общая сторона
АВ=АD; ВС=СD- по условию
Из этого следует, что треугольник ABC=ACD, а у равных треугольников все углы равны.
Следовательно угол BAC= углу CAD
Получается АС-биссектриса.
Так как DK II ME, то накрест лежащие углы равны, а это D=E, K=M, ME=DK имеем 2 признак равентсва треугольника - сторона и прилежащие к ней 2 угла одного треугольника = стороне и 2 углам другого ... доказано
Третью сторону треугольника обозначим f, а отрезки на которые биссектриса делит эту сторону d и m
l^2 = bc - dm
dm = bc - l^2
d/m = b/c (биссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон)
m = √[(bc - l^2) * b/c]
d = √[(bc - l^2) * c/b]
f = m + d = √[(bc - l^2) * b/c] + √[(bc - l^2) * c/b] = √[(4 - 1,44) * 0,25] + √[(4 - 1,44) * 4] = 0,8 + 3,2 = 4
КОС=АОВ/3
КОС=60/3=20
<em><u>Ответ: 20 градусов</u></em>