Если треугольник равнобедренный, тогда углы при основании равны.
х- 1 угол при основании
х- 2 угол при основании
х+15 - вершина
Напишем уровнение:
х+х+х+15=180°
3х=165°
х=165°÷3
х=55° - каждый угол при основании;
х+15 = 55°+15
х+15 = 70° - вершина
Ответ: 55°, 55°, 70°.
Обозн.
BM = CM = BC = a , Угол(MAB) =x
Угол(ABM) = 70° - 60° = 10°
Угол(MCA) = 80° - 60° = 20°
Из треуг. ABM по теореме синусов
a/sinx=AM/sin10° (1)
Из треуг. ACM тоже по теореме синусов
a/sin(30° - x)=AM/sin20° (2)
pазделим (1) на (2) получим
sin(30° - x)/ sinx= sin20°/ sin10°
(sin30°cosx - cos30°sinx )sinx = 2sin10°cos10°/sin10°
(1/2cosx -√3/2sinx)/sinx = 2cos10°
ctqx - √3 = 4cos10°
ctqx = √3 + 4cos10°
x=arcctq(√3 + 4cos10° )
Диагонали ромба перпендикулярны и в точке пересечения делятся пополам. Значит
<span>Тупоугольный треугольник. Один угол тупой, остальные – острые</span>