Дано: ΔАВС, АВ=16 см, ВС=22 см, СН-высота, СН=11 см
Найти высоту АК.
Найдем высоту АК через площадь треугольника.
S(ABC)=1\2 * AB * CH = 1\2 * 16 * 11 = 88 см²
S(ABC)=1\2 * ВС * АК
АК=88 : 11 = 8 см
Ответ: 8 см.
Теугольник АВС=Тр.РМК, следовательно, АВ=РМ,АС=РК, ВС=МК, угол С = углу К . Если тр АВС И РКМ равнобедренные то , Угол А=углу С=лууг Р=углу Кследовательно угол А и угол Р будут 36 градусов.а угол В и угол М =180-36-36=108 градусов( из теорему о сумме угов треугольника) Подойдет 7