-2*(х-5)+3*(х-4)=4х+1
<span>-2х+10+3х-12=4х+1
-2х+3х-4х=1+12-10
-3х=3
х=3:(-3)
х=-1</span>
1)3x^2-6x-44=(x-4)^2
3x^2-6x-44=x^2-8x+16
3x^2-6x-44-x^2+8x-16=0
2x^2+2x-60=0
Разделим обе части уравнения на "2":
x^2+x-30=0
D=1^2-4*1*(-30)=121
x1=(-1-11)/2=-6
x2=(-1+11)/2=5
2)4x^2-45x+123=(x-9)^2
4x^2-45x+123=x^2-18x+81
4x^2-45x+123-x^2+18x-81=0
3x^2-27x+42=0
Разделим обе части уравнения на "3":
x^2-9x+14=0
D=(-9)^2-4*1*14=25
x1=(9-5)/2=2
x2=(9+5)/2=7
3)20x-14=15x+20
20x-15x=20+14
5x=34
x=6,8
4)x-2=5x+9
x-5x=9+2
-4x=11
x=-2,75
5)(x-1)/(x-2)=3
3(x-2)=x-1
3x-6=x-1
3x-x=6-1
2x=6
x=2,5
6)(2x-4)/(2x+3)=5
5(2x+3)=2x-4
10x+15=2x-4
10x-2x=-4-15
8x=-19
x=-19/8
7)20/(x-14)=14(x-20)
14(x-14)=20(x-20)
14x-196=20x-400
14x-20x=196-400
-6x=-204
x=34
x^2-8x+27=x^2-2*4x+16+11=(x-2)^2+11,где
(x-2)^2>=0
б)a^2-4a+20=(a-2)^2+16
Ответ:16
Решение:
Обозначим первоначальную цену чашки до подорожания за (х) %, а первоначальную цену блюдца за (у)%, тогда первоначальная цена стоимость чайной пары составляет:
(х+у)=100%
После подорожания чашки на 15%, стоимость чашки равна:
х+15% *х :100%=х+0,15х=1,15х (%)
После подорожания блюдца на 27%, стоимость блюдца стала равной:
у+ 27%*у :100%=у+0,27у=1,27у (%)
А так как стоимость чайной пары после подорожания чашки и блюдца подорожала на 18%, то есть стала стоить100%+18%=118%, составим уравнение:
1,15х+1,27у=118%
Решим получившуюся систему уравнений:
х+у=100
1,15х+1,27у=118
Из первого уравнения найдём значение (х)
х=100-у Подставим значение (х) во второе уравнение:
1,15*(100-у)+1,27у=118
115 -1,15у+1,27у=118
0,12у=118-115
0,12у=3
у=3 : 0,12
у=25 (%)
Подставим найденное значение (у) в х=100-у
х=100-25=75 (%)
Определим сколько процентов от чайной пары составляет стоимость чашки до подорожания:
75% : 100% *100%=75%
Ответ: Процент стоимости чашки от чайной пары до подорожания составляет 75%
5√3sin(1080+60)+4cos(720+60)-ctg²30=5√3sin60+4cos60-ctg²30=
=5√3*√3/2+4*1/2-(√3)²=7,5+2-3=6,5