Центр описанной окружности<span> располагается на пересечении </span>серединных перпендикуляров<span>треугольника. Так как треугольник </span>равнобедренный<span>, то </span>биссектриса<span> и </span>серединный перпендикуляр, проведенные к основанию, совпадают.
<span>Следовательно, BO - </span>биссектриса<span> угла ABC.</span>
Тогда: ∠CBO=∠ABC/2=177°/2=88,5°
<span>Треугольник OBC - </span>равнобедренный, так как OB и OC - радиусы окружности и следовательно равны.
<span>По </span>свойству равнобедренного треугольника:
∠CBO=∠BCO=88,5°
<span>По </span>теореме о сумме углов треугольника:
180°=∠CBO+∠BCO+∠BOC
180°=88,5°+88,5°+∠BOC
∠BOC=3°
<span>Ответ: 3</span>
Дано: AB=BC=CD=AD (ABCD _ромб) , ∠A =30° ;
∠SEO =∠SFO=∠SMO=∠SNO = α =60°,SO=3√3.
E∈[AB] , F∈[BC] , M ∈[AB] ,N ∈[CD] .
-------
V -?
V =(1/3)*Sосн *H =(1/3)*Sосн *3√3 = √3*Sосн.
Пусть основания высоты пирамиды точка O:
* * * SO⊥ (ABCD), O ∈ (ABCD). * * *
<span>Если все двугранные углы при ребрах основания составляют равные
углы (как в данном примере </span>α=60°) ,то высота пирамиды проходит через центр окружности <span>вписанной в основании (здесь ромб ).
</span>[[ Прямоугольные треугольники SEO , SFO,SMO и SNO равны по общим катетом SO и острым углам ∠SEO =∠SFO=∠SMO=∠SNO.
⇒EO =FO=MO=NO =r и SE ,SF, SM, SN равные апофемы .]]
EF⊥ AD ; MN ⊥BC<span>
* * *
Рассмотрим </span>ΔESF: треугольник равносторонний ∠SEO =∠SFO=60°.
SO =(a*√3)/2= (EF*√3)/2.
3√3 =(EF*√3)/2⇒ EF = 6 . Проведем BH ⊥AD.Ясно BH =EF =6.
Из ΔABH: BH =AB/2 (катет против угла ∠A =30°) ⇒<span>AB=2BH.
</span>Sосн =AD*BH =AB*BH =2BH*BH =2BH² =2*6² =72<span>.
</span>* * * или Sосн =AB*AD*sin∠A =AB²*<span>sin∠A * * *</span>
V =√3*Sосн =72√3.
BE - высота
BE = BC (по условию), следовательно высота равна 7 см
треугольник ABE прямоугольный, угол BAE в нем равен 45, следовательно другой угол (ABE) тоже равен 45 (180 - (90 +45)), следовательно этот треугольник равнобедренный. Из этого следует, что высота BE равна AE, AE = 7 см.
Высота равна основанию трапеции BC, стороне CD и ED (по условию).
AD = AE + ED = 7+7
AD = 14 см
Ответ: 14 см
Две прямые могут иметь либо одну точку пересечения,либо множество(когда они совпадают),либо ни одной(если они параллельны)