Рассмотрим треугольник ACD-прямоугольный , т.к угол ACD-прямоугольный. AC=AD*sin30=24*1/2=12. Угол BAD=90,угол ВСА=360-углыADC-ACD-BAD-ABC=360-30-90-90-90=60.Рассмотрим треугольник АВС-прямоугольный.ВС=АС*cos60=12*1/2=6
Диагонали в прямоугольнике точкой пересечения делятся пополам, и образуют два попарно равных равнобедренных треугольника, неважно, какой из них мы будем рассматривать, важно то что точка пересечения это вершина любого из этих четырех равнобедренных треугольников, а по условию сказано, что прямая проведена из точки пересечения к середине стороны, а сторона это основание равнобедренного треугольника, а отрезок проведенный из вершины к середине основания, это медиана, а в равнобедренном треугольнике медиана является биссектрисой и высотой, а высота перпендикулярна основанию. ЧТД)
<span>Опустить высоту ВН.
В прямоугольном треугольнике АВН
гипотенуза АВ = 13,
катет АН = AD - BC =(9 + R) - (4 + R) = 5
катет AH = 5
катет ВН = 2R и это же высота найдём его по теореме Пифагора
ВН</span>²<span> = (АВ)</span>²<span> – (АН)</span>²
<span>ВН = √(13</span>²<span> - 5</span>²<span>) = </span>√(169 - 25) = √144<span> </span> = 12
Отсюда R = 12 : 2 = 6
ВС = 6 + 4 = 10
AD = 9 + 6 = 15
S = (BC + AD) * BH/2
S = (10 + 15) * 12/2 = 25 * 6 = 150
Ответ S = 150
Ответ № 4 - тупой и два острых. )))))))))))))))))))))))))