треугольники АОМ и ОВМ прямоугольные, ОА и ОВ - радиусы- перпендикуляры, проведенные в точки касания, треугольниу АОВ равнобедренный, ОА=ОВ=радиус, ОК-(К пересечение ОМ и АВ) =высота, медиана, биссектриса, уголАОК=уголВОК=уголАОВ/2=60/2=30, треугольник АОМ, АМ=1/2ОМ=24/2=12=ВМ - как касательные проведенные из одной точки, ОА=ОМ*cos30=24*корень3/2=12*корень3, треугольник ОАК прямоугольный, АК=1/2ОА=12*корень3/2=6*корень3, АВ=2*АК=2*6*корень3=12*корень3, периметр АМВ=12+12+12*корень3=12*(2+корень3)
Ответ:
решение представлено на фото
Пусть АВ = 20 см, АС = 15 см
1) По теореме Пифагора ВС^{2} = АВ^{2} + АС^{2}
ВС^{2} = 20^{2} + 15^{2}
ВС^{2} = 400 + 225
ВС^{2} = 625
ВС = 25 см
2) 20 + 15 + 25 = 60 (см) - периметр АВС
Ответ: 60 см.