BC²=AB²+AC²-2AB*AC*cos30
BC²=49+64-2*7*8*(√3/2)
BC²=113-56√3
BC=√(113-56√3)=4
<span>Высота BH делит треугольник </span><span>ABC</span><span>на два прямоугольных треугольника </span><span>AHB</span><span><span> </span></span><span>BHC</span><span>, так как высота - перпендикуляр к стороне АС. АС = АН + НС. Из треугольника АНВ<span> </span>АН = ВН/tg </span><span>α</span><span> = </span><span>BH</span><span>·</span><span>ctg</span><span>α</span><span> = 4 </span><span>ctgα</span><span>. Из треугольника ВНС НС = ВН/tg β = </span><span>BH</span><span>·</span><span>ctg</span><span>β</span><span>. АС = 4·(</span><span>ctg</span><span>α</span><span> + </span><span>ctgβ</span><span>).</span>
1) 10 см √8²+6²
2)17 см. √15²+8²
Теорема Пифагора
Сума квадратов катетов равна квадрату гипотенузы.
Диагональ, которая перпендикулярна основаниям разбивает трапецию на два подобных треугольника, у которых общей стороной является эта самая диагональ, одновременно являющейся высотой трапеции.
В малом треугольнике с катетом (снованием) 2 см, протв высоты h находится угол α(неизвестный), тогда (согласно условию) угол, примыкающий к катету (основанию) в 18 см равен 90-α. Тогда в большом тр-ке угол между большей боковой стороной трапеции и высотой равен α, а в малом тр-ке угол между высотой и малой боковой стороной равен (90-α). Очевидно, что треугольники подобны, раз у них все соответствующие углы равны.
В подобных тр-ках стороны, лежащие против равных углов, пропорциональны:
2:h =h:18
h² = 36
h = 6
Площадт трапеции равна произведению полусуммы оснований и высоты:
Sтрап = 0,5(2 + 18)·6 = 60(см²)
1) 180-(20+80)=80
2)180-(111+52)=7
3)180-(23+60)=97
4)180-(57+95)=28